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Exercise 25

Solve the diffusion problem with a source function q(x, t)

ut = κuxx + q(x, t), −∞ < x <∞, t > 0,

u(x, 0) = 0 for −∞ < x <∞.

Show that the solution is

u(x, t) =
1√
4πκ

ˆ t

0
(t− τ)

1
2 dτ

ˆ ∞
−∞

q(k, τ) exp

[
(x− k)2

4κ(t− τ)

]
dk.

Solution

The PDE is defined for −∞ < x <∞, so we can apply the Fourier transform to solve it. We
define the Fourier transform here as

F{u(x, t)} = U(k, t) =
1√
2π

ˆ ∞
−∞

e−ikxu(x, t) dx,

which means the partial derivatives of u with respect to x and t transform as follows.

F
{
∂nu

∂xn

}
= (ik)nU(k, t)

F
{
∂nu

∂tn

}
=
dnU

dtn

Take the Fourier transform of both sides of the PDE.

F{ut} = F{κuxx + q(x, t)}

The Fourier transform is a linear operator.

F{ut} = κF{uxx}+ F{q(x, t)}

Transform the derivatives with the relations above.

dU

dt
= κ(ik)2U +Q(k, t)

Expand the coefficient of U and bring the term to the left side.

dU

dt
+ κk2U = Q(k, t) (1)

The PDE has thus been reduced to an ODE. Before we solve it, we have to transform the initial
condition as well. Taking the Fourier transform of the initial condition gives

u(x, 0) = 0 → F{u(x, 0)} = F{0}
U(k, 0) = 0. (2)

Equation (1) is an ODE in t, so k is treated as a constant. It is first-order and inhomogeneous, so
it can be solved with an integrating factor of the form,

I = e
´ t κk2 ds = eκk

2t.
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Multiply both sides of equation (1) by I.

eκk
2tdU

dt
+ κk2eκk

2tU = Q(k, t)eκk
2t

The ODE is now exact, and the left side can be written as d/dt(IU) as a result of the product
rule.

d

dt
(eκk

2tU) = Q(k, t)eκk
2t

Integrate both sides with respect to t.

eκk
2tU =

ˆ t

0
Q(k, τ)eκk

2τ dτ + C

The lower limit of integration 0 is arbitrary; the constant of integration C will be adjusted
accordingly to satisfy the initial condition. Speaking of which, we can apply equation (2) now to
determine C.

0 = C

Divide both sides by eκk
2t to solve for U .

U(k, t) = e−κk
2t

ˆ t

0
Q(k, τ)eκk

2τ dτ

Bring the exponential inside the integral and combine it with the one in the integrand.

U(k, t) =

ˆ t

0
Q(k, τ)eκk

2(τ−t) dτ

Now that U(k, t) is solved for, we can obtain u(x, t) by taking the inverse Fourier transform of it.

u(x, t) = F−1{U(k, t)}

= F−1
{ˆ t

0
Q(k, τ)eκk

2(τ−t) dτ

}
Because we are taking the inverse Fourier transform of a product of two functions, Q(k, τ) and
eκk

2(τ−t), we can apply the convolution theorem, which states that

F−1{F (k)G(k)} = 1√
2π

ˆ ∞
−∞

f(x− ξ)g(ξ) dξ = 1√
2π

ˆ ∞
−∞

f(ξ)g(x− ξ) dξ.

Looking up the Fourier transform of e−ax
2
in a table,

F{e−ax2} = 1√
2a
e−

k2

4a ,

and comparing it with U(k, t), we want a to be chosen so that

− 1

4a
= κ(τ − t) → a =

1

4κ(t− τ)
.

Hence, after taking the inverse Fourier transform of both sides and multiplying both sides by
√
2a,

√
2ae−ax

2
= F−1

{
e−

k2

4a

}
.
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Plugging in the value of a we found, we now know the inverse Fourier transform of the
exponential function and can apply the convolution theorem.

1√
2κ(t− τ)

e
− x2

4κ(t−τ) = F−1
{
eκk

2(τ−t)
}

By the convolution theorem,

u(x, t) =
1√
2π

ˆ ∞
−∞

ˆ t

0
q(ξ, τ)

1√
2κ(t− τ)

e
− (x−ξ)2

4κ(t−τ) dτ dξ.

Switch the order of the integrals and move the constants out in front.

u(x, t) =
1√
4πκ

ˆ t

0

1√
t− τ

[ˆ ∞
−∞

q(ξ, τ)e
− (x−ξ)2

4κ(t−τ) dξ

]
dτ

Change ξ to k. Therefore,

u(x, t) =
1√
4πκ

ˆ t

0

dτ√
t− τ

ˆ ∞
−∞

q(k, τ)e
− (x−k)2

4κ(t−τ) dk.
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